M1. (a) increases
increases
(b) $23(\mathrm{~m})$
accept 43 circled for 1 mark
accept $9+14$ for 1 mark
(c) (i) all points correctly plotted
all to $\pm 1 / 2$ small square one error = $\mathbf{1}$ mark two or more errors = $\mathbf{0}$ marks
line of best fit
(ii) correct value from their graph ($\pm 1 / 2$ small square)
(d) (i) 70
$1 / 2 \times 35 \times 4$ gains 2 marks
attempt to estimate area under the graph for 1 mark
(ii) line from $(0.6,35)$
cutting time axis at time $>4.6 \mathrm{~s}$ accept cutting x-axis at 6
(e) (i) 42000
1200×35 gains 1 mark
kgm / s
Ns
(ii) $10500(\mathrm{~N})$

42000 / 4 gains 1 mark alternatively:

$$
\begin{aligned}
& a=35 / 4=8.75 \mathrm{~m} / \mathrm{s}^{2} \\
& F=1200 \times 8.75
\end{aligned}
$$

M2. (a) (i) zero
accept nothing
speed is zero
accept not moving
(ii) A

> largest mass or weight accept heaviest luggage do not accept largest luggage
(iii) momentum does change accept yes
accept yes
(
direction is changing
accept velocity is changing do not accept answers in terms of speed changing
(iv) $\mathrm{kg} \mathrm{m} / \mathrm{s}$

1

M3. (a) (i) 4.5
allow 1 mark for correct substitution i.e. $9 \div 2$
(ii) $\mathrm{m} / \mathrm{s}^{2}$
accept answer given in (a)(i) if not contradicted here
(iii) speed
(iv) straight line from the origin passing through ($2 \mathrm{~s}, 9 \mathrm{~m} / \mathrm{s}$)
allow 1 mark for straight line from the origin passing through to $t=2$ seconds allow 1 mark for an attempt to draw a straight line from the origin passing through $(2,9)$
allow 1 mark for a minimum of 3 points plotted with no line provided if joined up would give correct answer. Points must include(0,0) and $(2,9)$
(b) (i) \mathbf{B}
if \boldsymbol{A} or \boldsymbol{C} given scores $\mathbf{0}$ marks in total
smallest (impact) force
on all/ every/ any surfaces
these marks are awarded for comparative answers
(ii) (conditions) can be repeated
or
difficult to measure forces with human athletes accept answers in terms of variations in human athletes e.g. athletes may have different weights area / size of feet may be different difficult to measure forces athletes run at different speeds
accept any answer that states or implies that with humans the conditions needed to repeat tests may not be constant
e.g.
athletes unable to maintain constant speed during tests (or during repeat tests)
do not accept the robots are more accurate removes human error is insufficient fair test is insufficient

M4. (a) (i) 10800
allow 1 mark for correct substitution i.e. 900×12
(ii) arrow pointing towards the left allow anywhere on the diagram or at bottom of the page
(b) zero
accept 0 / none / nothing
velocity is zero
accept speed for velocity
accept stopped / not moving
accept a calculation i.e. $900 \times 0=0$

M5. (a) (i) 16000
allow 1 mark for correct substitution ie 3200×5
(ii) 16000 or their (a)(i)
(iii) less than
(b) increases
decreases
correct order only

M6. (a) (i) lorry
reason only scores if lorry chosen

greatest mass

accept weight for mass
accept heaviest
accept correct calculations for all 3 vehicles the biggest is insufficient
(ii) 2450
allow 1 mark for correct substitution ie 175×14
(b) (i) increases
accept any clear indication of the correct answer
(ii) speed increases
accept velocity for speed
accept gets faster
do not accept it accelerates on its own
moves more is insufficient
(iii) straight line going to 6, 20
allow 1 mark for a curve going to 6,20
or a straight line diagonally upwards but missing 6,20
horizontal line from 6,20 to 8,20
allow a horizontal line from where their diagonal meets $20 \mathrm{~m} / \mathrm{s}$ to 8,20

